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MiRNA-based cancer classifier
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Influence diagnostic based on FISH
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There is a need for multiplexed detection
and analysis
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Nucleic acid detection uses VVatson-
Crick base pairing

RNA sequence:
5 -AAUUCAGAUCCAC

Probe sequence:
3" —UUAAGUCUAGGUG-5"

A

Microarrays, qPCR and similar technologies typically require expensive instruments and complex
sample preparation.




Requirements for a good nucleic acid
detection technology

Sequence selectivity: Single point mutations can be diagnostic of a disease

Amplification: Diagnostically relevant nucleic acids can be at very
low concentration (mir-141: 100 000 copies/ul in serum)

Cheap and easy to use (for low resource settings)

Multiplexed detection of multiple markers




Strand displacement provides a mechanism
for RNA sensing and analysis
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For a review see D.Y. Zhang and G. Seelig, Nature Chemistry (201 1)




Strand displacement provides a mechanism
for RNA sensing and analysis
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5" —AAUUCAGAUCCAC
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For a review see D.Y. Zhang and G. Seelig, Nature Chemistry (201 1)




Strand displacement provides a mechanism
for RNA sensing and analysis
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Strand displacement is initiated at the single-stranded toeholds. Toehold binding is a reversible
process.



Strand displacement provides a mechanism
for RNA sensing and analysis

Strand displacement proceeds through a branch migration. Branch migration is a random walk.



Strand displacement provides a mechanism
for RNA sensing and analysis
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Release of the output strand is (almost) irreversible in the absence of a toehold for the reverse
reaction.



Signals can propagate through multiple layers
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The sequences of inputs and outputs can be completely independent.



Signals can propagate through multiple layers
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Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.



Signals can propagate through multiple layers
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Signals can propagate through multiple layers

e N
I 2 3)
< ..........
| * 2% 3%
Gate

The sequences of inputs and outputs can be completely independent.



Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.



Reaction kinetics are approximately

bimolecular
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Toehold length determines reaction rate
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Toehold-mediated strand displacement experiments (m = 0). Results presented in this figure also use domains ys and yw in
place of domain y where specified. (A) Sample trajectories for n = 5. S and R were initially in solution at the displayed
concentrations, and X(0, 5) was added to solution at { = 0 to achieve the final concentration displayed. The black dotted lines
labeled “fit” denote simulations of a bimolecular reaction with with the experimental best-fit rate constant k{0, 5} = 1.0 x 106
M-1 s—1, and the reporter reaction with rate constant krep = 1.3 x 106 M-1 s—1. The black lines spanning A, B, and C
indicate that the three traces shown in A are represented by a single data point in B and C. (B) Summary of strand
displacement rate constants plotted against the invading toehold length n. The y-axis shows the base-10 logarithm of the
experimental best-fit values (“fits”) and three-step model predicted values (“model”) of ks{0, n}, k{0, n}, and kw{0, n},
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Requirements for a good nucleic acid
detection technology

Sequence selectivity: Single point mutations can be diagnostic of a disease

Amplification: Diagnostically relevant nucleic acids can be at very
low concentration (mir-141: 100 000 copies/ul in serum)

Cheap and easy to use (for low resource settings)

Multiplexed detection of multiple markers




Strand displacement-based signal amplification:
An input can release more than one output
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Qian and Winfree, Science (201 1)
(see also Zhang et al. Science (2007), Seelig et al. JACS (2006), Turberfield et al. PRL (2004))



Strand displacement-based signal amplification:
An input can release more than one output
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Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output
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Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output
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Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output
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Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output




Strand displacement-based signal amplification:
An input can release more than one output
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Strand displacement-based signal amplification:
An input can release more than one output
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Qian and Winfree, Science (201 1)
(see also Zhang et al. Science (2007), Seelig et al. JACS (2006), Turberfield et al. PRL (2004))



Requirements for a good nucleic acid
detection technology

Sequence selectivity: Single point mutations can be diagnostic of a disease

Amplification: Diagnostically relevant nucleic acids can be at very
low concentration (mir-141: 100 ‘000 copies/ul in serum)

Cheap and easy to use (for low resource settings)

Multiplexed detection of multiple markers




An ideal detection scheme can identify
individual point mutations

let-"7a: ugagguaguagguuguauaguu
let-"7b: ugagguaguagguugugugguu
let-"7c: ugagguaguagguuguaugguu
let-7d: agagguaguagguugcauaguu
let-7e: ugagguaggagguuguauaguu
let-7f: ugagguaguagauuguauaguu
let-7g: ugagguaguaguuuguacaguu
let-71: ugagguaguaguuugugcuguu

let-7a*:aacuauacaaccuacuaccuca

Single mutations distinguish between multiple members of a miRNA family.



Individual mismatches can be hard to

detect
RNA sequence:
> 5" —AAUUCAGAUCCAC
) |
>

Probe sequence:
5 -AAUUCAGTUCCAC

NN NN

Mismatch discrimination works best near the melting temperature of the probe.




Strand displacement kinetics is sensitive to
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Amplification kinetics is sensitive to

mismatches
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End point discrimination is not possible and kinetics depend on concentrations.




Strand displacement provides a mechanism
for mismatch discrimination at the end-point
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Requirements for a good nucleic acid
detection technology

Sequence selectivity: Single point mutations can be diagnostic of a disease

Amplification: Diagnostically relevant nucleic acids can be at very
low concentration (mir-141: 100 ‘000 copies/ul in serum)

Cheap and easy to use (for low resource settings)

Multiplexed detection of multiple markers




Strand displacement can be used for
multiplexed detection and analysis
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